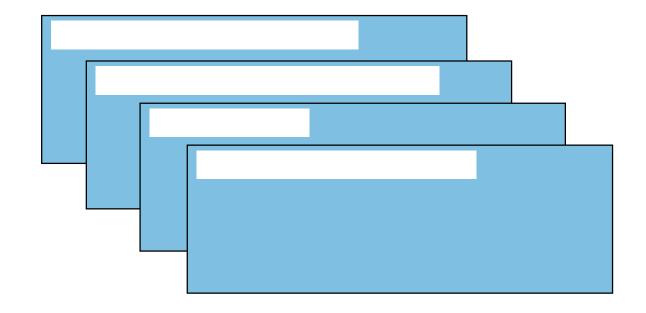


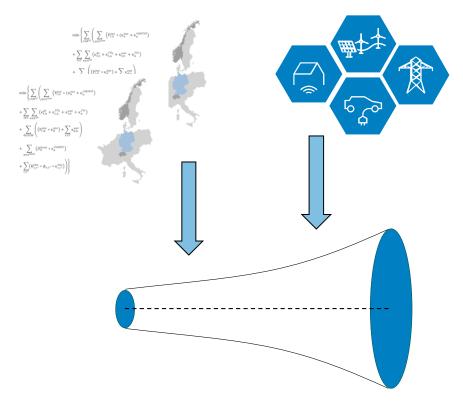
Development of scenarios for a multi-model systems analysis of cellular energy systems

Energy Scenario Conference

Matthias Kühnbach (Fraunhofer ISI) Felix Guthoff (IER – University of Stuttgart)

Karlsruhe 25.09.2018


Bundesministerium für Wirtschaft und Energie



Agenda

Development of scenarios for a multi-model systems analysis of cellular energy systems

Motivation and Challenges

- The transformation of the energy system is ongoing:
 - Growth of RES
 - Decentralization
 - Sector coupling and electrification
- > How can we evaluate systemic transformations?
- > How to analyse innovative concepts which affect the development of the energy system?
- > How can we use and compare results from multiple models?

→ develop a scenario framework (consisting of two scenarios) which considers both innovative aspects and model-specific characteristics

Research Framework: C/sells

Energy System of the Future in the Southern German Solar Arc

Research project in the framework of SINTEG (funding: BMWi)


Volume: 100 Mio. € (Total)

Duration: 01/01/2017 – 31/12/2020

Largest SINTEG showcase with a reach of approx. 30 Mio. citizens

59 partners

32 'demonstrators', 9 cells aiming at active participation of citizens

Decentralised and cellular energy systems

Decentralised energy systems

- Electricity supply close to demand [1]
- Small-scale generation, often based on renewable sources [2]
- Generation units connected to lower voltage levels of the grid [2, 3]

Cellular energy systems

- Balancing of generation and demand at the most local level before an interaction with a neighboring or superior cell [4, 5].
- Energy cells can range from single buildings or devices up to whole (grid) regions [4].

Objectives:

- Integrate RES
- Increase/maintain system security
- Decrease complexity
- [1,5]

System Analysis in C/sells

- 6 research institutions, 5 energy system models
- General research questions addressed on the systemic level:

What are the effects of elements of a cellular energy system on the energy system as a whole?

Methodology

Matthias Kühnbach (FhG ISI), Felix Guthoff (IER)

(1) Identification of Areas of Influence

Narrowing the scenario's scope

- Identify and determine areas of influence
- Subdivide areas of influence into influence factors
- Potential impacts on the research questions
 Independent from modelling considerations
- > How to consider cellular aspects in an energy scenario?

Development of technology	Generation technology		
Infrastructure	Grid		
Demand	Demand in sectors		
Demand	Flexibility options		
Aspects of cellular systems	Definition of cell		

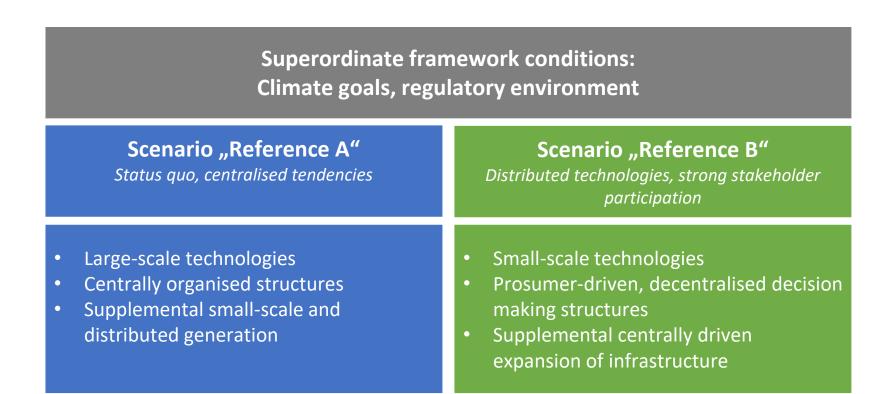
(2) Selection of Descriptors

To describe the areas of influence more precisely, several descriptors are defined in each case

 Descriptors are a mean of explaining areas of influence 				
 Formulated in a neutral way 	Development of technology	Generation technology	Generating capacities	
 Establish a common wording for scenarios 	Infrastructure	Grid	Development of NTCs	
	Domond	Demand in sectors	Degree of electrification	
	Demand	Flexibility	Flexibility options	
	Aspects of cellular systems	Definition of cell	Degree of prosumer participation	

Split of Paths

The descriptors are used to describe the scenario framework (1) and to identify the model requirements (2)


Development of technology	Generation technology	 Generating capacities Drivers of RES-expansion Assumptions reg. international projects 	 Development of capacities / RES- feed-in Development of costs of technologies
Infrastructure	Grid		National system expansionNTCs

(3A) Narrative Path: Qualitative Storylines

Two reference scenarios are designed in which the effects of new concepts are analysed

(3B) Model-Specific Path

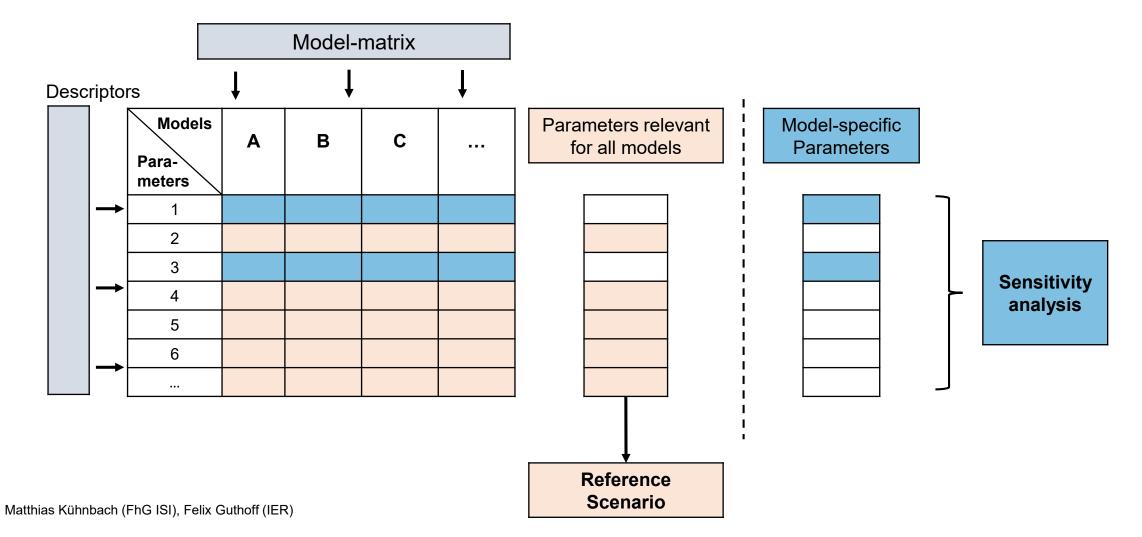
Model matrices are developed to compare the models' characteristics

- Externalise model characteristics and requirements
- Facilitate transparency
- Visualise models' system boundaries

				Model B				
				Descriptor	Input	Parameter	Output	
Model C								
		Properties						
Descriptor	Input	Parameter	Output	 Temporal Resolution 				
				 Sector Integration Effects of regulatory frameworks 				
Properties								
 Temporal R Sector Integ Effects of re 		meworks						

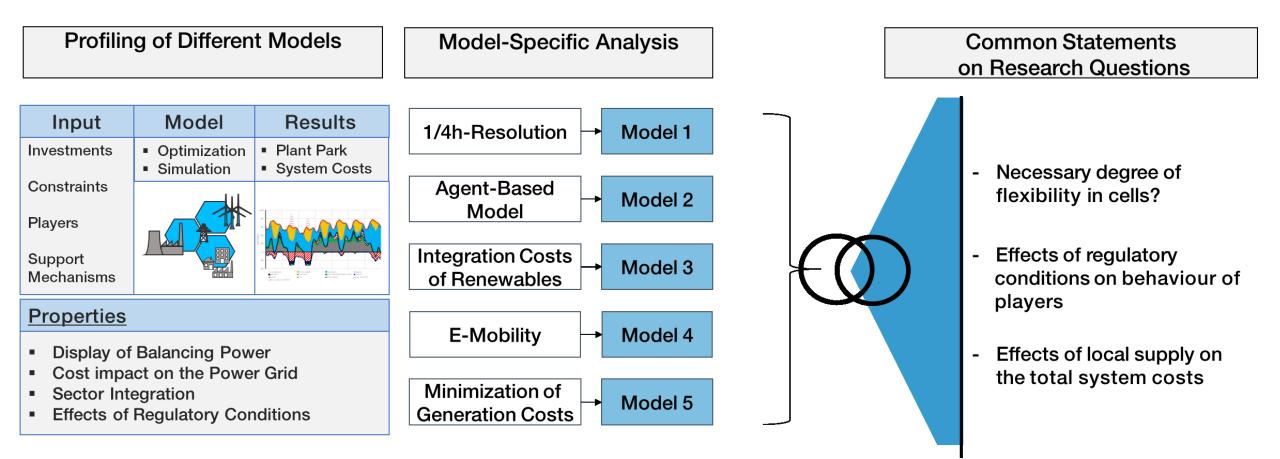
Model A

Descriptor	Input	Parameter	Output


Properties Temporal Resolution Sector Integration Effects of regulatory frameworks

13

(3B) Model-Specific Path


Objective: Obtain a condensed set of descriptors and parameters

(3B) Model-Specific Path

The model matrix allows a comparability of the results and joint derivation of statements

Conclusion and Outlook

- Straightforward method but time-consuming process (duration of process ~ 6 months)
- Method revealed heterogeneity of models but nevertheless facilitated comparability
- Complexity reduction (in order to make the scenario applicable for all models involved), however, approach can lead to oversimplification

Next Steps:

- Parametrisation and calculation of two reference scenarios: 2018
- Sensitivity analysis: 2019
- Test applicability for grid simulations within the project is the methodology transferable to other research questions?

References

- [1] Allan, Grant; Eromenko, Igor; Gilmartin, Michelle; Kockar, Ivana; McGregor, Peter (2015): The economics of distributed energy generation. A literature review. In Renewable and Sustainable Energy Reviews 42, pp. 543–556. DOI: 10.1016/j.rser.2014.07.064.
- [2] Di Silvestre, Maria Luisa; Favuzza, Salvatore; Riva Sanseverino, Eleonora; Zizzo, Gaetano (2018): How Decarbonization,
 Digitalization and Decentralization are changing key power infrastructures. In Renewable and Sustainable Energy Reviews 93,
 pp. 483–498. DOI: 10.1016/j.rser.2018.05.068.
- [3] Ren, Hongbo; Gao, Weijun (2010): A MILP model for integrated plan and evaluation of distributed energy systems. In Applied Energy 87 (3), pp. 1001–1014. DOI: 10.1016/j.apenergy.2009.09.023.
- [4] Vopava, Julia; Thormann, Bernd; Kienberger, Thomas (2017): Development of a Model for Power Grids Based on the Cellular Approach for an Optimum Integration of Electric Charging Infrastructure. In 1st E-Mobility Power System Integration Symposium; Berlin, Germany; 23 October 2017, checked on 9/10/2018.
- [5] VDE and ETG (2015): The cellular approach The basis of successful, cross-regional energy transition. Edited by Association for Electrical, Electronic and Information Technologies. Munich.

Thank you for your attention

Matthias Kühnbach

Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48, 76139 Karlsruhe

+49 721 6809-147

matthias.kuehnbach@isi.fraunhofer.de

Felix Guthoff

Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart Heßbrühlstraße 49a, 70565 Stuttgart +49 711 685-87824 felix.guthoff@ier.uni-stuttgart.de