

Elektromobilität in Deutschland

Ambitionierte Zielsetzung für Deutschland bis ins Jahr 2030

10 - 15 Mio. Elektrofahrzeuge

1 Mio. öffentlich zugängliche Ladepunkte

bis 2030

1/3 der Fahrleistung im schweren Straßengüterverkehr elektrisch oder auf Basis strombasierter Kraftstoffe

61%
Private Stellplätze
am Wohnort mit
Ladepunkt

Quellen: Klimaschutzprogramm 2030 | Masterplan Ladeinfrastruktur | Nationale Leistelle Ladeinfrastruktur

Unterscheidung von Ladevorgängen für Elektrofahrzeuge Die Herausforderungen für den Verteilnetzbetrieb sind heterogen

PRIVATES LADEN

Wohnen & Laden

- > Beispiele: über Nacht zu Hause, Mehrparteienhaus, Hotel
- > Technologie: AC 3 - 11 kW

Arbeiten & Laden

- > Beispiele: Fuhrpark, Mitarbeiter, Gäste, E-Nutzfahrzeuge
- > Technologie: AC 3 - 11 - 22 kW

Nutzung 10-12 h 10-12 h pro Tag

Batterie Parkdauer 20-100 % 8-10 h

Nutzung 8-10 h pro Tag

ÖFFENTLICHES LADEN

Parken / Einkaufen & Laden

- Beispiele: Supermarktparkplatz
- > Technologie: DC bis 50 kW

Reisen & Laden / Laden = Tanken

- > Beispiele: Laden auf Reisen
- > Technologie: DC 150 - 350 kW

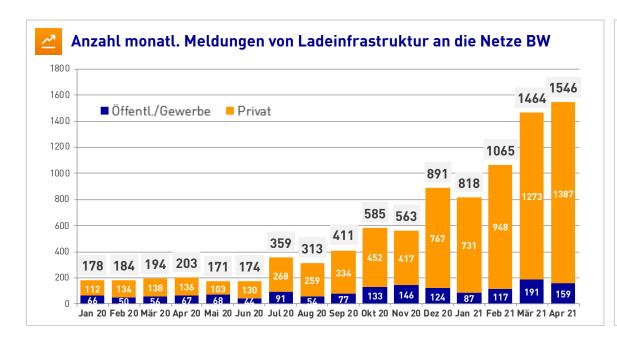
CCS

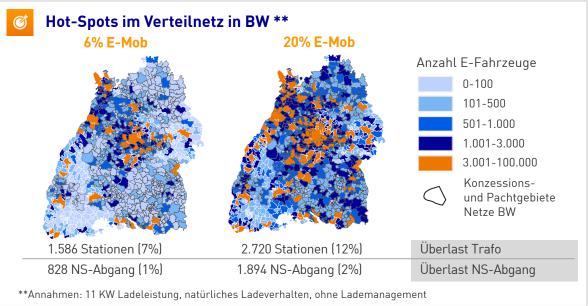
CCS

Batterie 20-80 %

Parkdauer Nutzung 1-3 h pro Woche

Batterie fast leer


Parkdauer 8-10 min


Nutzung 1-5 h pro Jahr

Der Hochlauf der Elektromobilität fordert die Verteilnetze

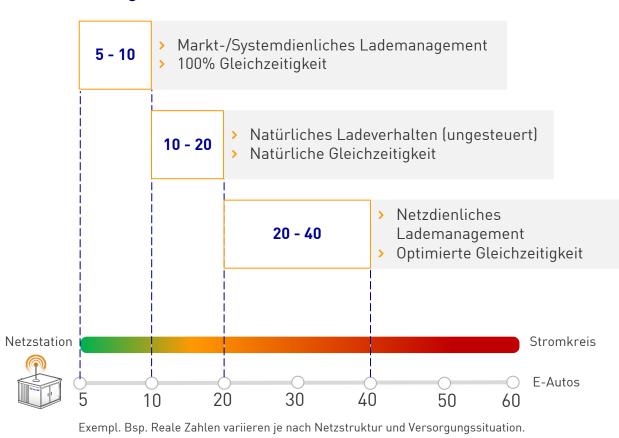
Der Handlungsdruck das Stromnetz weiterzuentwickeln und zu verstärken ist hoch

- > Die Verteilnetze werden insbesondere in der Niederspannung (Wohngebiete) stark belastet
- > Transparenz über die Netzauslastung, Überwachung von HotSpots und vorausschauende Prognosen ermöglichen datenbasierte Maßnahmen
- > Intelligente Netzoptimierung und netzdienliches Lademanagement ermöglichen bis zum erfolgten Netzausbau eine Erhöhung der Aufnahmekapazität des bestehenden Netzes für E-Fahrzeuge

NETZlabore Netzintegration Elektromobilität

Unter realen Bedingungen untersuchen wir die Auswirkung von Elektromobilität auf das Stromnetz

Erkenntnisse


- Das Ladeverhalten ändert sich mit zunehmender Zeit Reichweitenangst sinkt
- Die maximale Gleichzeitigkeit der Ladevorgänge liegt zwischen 22% und 75%
- Lademanagement ist ein wirksames Mittel, um Lastspitzen zu glätten
- > Die Relevanz netzdienlicher Steuerbarkeit ist hoch

Netzdienliches Lademanagement bietet großes Potenzial

Wie hoch ist die Aufnahmekapazität des bestehenden Stromnetzes für Elektrofahrzeuge bevor Netzausbau notwendig wird?

Warum netzdienliches Lademanagement?

- Die Aufnahmekapazität des Stromnetzes für ungesteuert ladende Fahrzeuge ist begrenzt
- Mit netzdienlichem Lademanagement können wir unseren Kunden einen schnellen Anschluss ihrer Ladepunkte ins bestehende Stromnetz gewähren

Wie steuern wir Ladevorgänge?

- > Statisches Lademanagement: Reduktion der Ladeleistung in definierten Zeitfenstern (19-23Uhr) auf 5,5kW. Ladevorgänge verlängern sich um ca. 2h
- > Dynamisches Lademanagement: Reduktion der Ladeleistung im Bedarfsfall über Echtzeit-Netzzustandsüberwachung, hoher Grad an Digitalisierung erforderlich

Was sagen unsere Kunden?

In all unseren NETZlaboren fühlen sich unsere Kunden **nicht eingeschränkt** durch netzdienliches Lademanagement, im E-Mobility-Carré **93**%

Kundenzentrierte und erfolgreiche Netzintegration der Elektromobilität Das Verteilnetz ist die Grundlage der Elektromobilität, dafür braucht es Erfolgsfaktoren

Wie gelingt die erfolgreiche Netzintegration der Elektromobilität?

Digitalisierung im Verteilnetz

Transparenz über die Netzauslastung, sensorische **Überwachung** von Ortsnetzstationen, granulare **Prognose** über künftigen Entwicklung von Elektromobilität etc.

Kundenzentrierung und Automatisierung

Transformation interner Prozesse, um massenfähig, effizient und schnell agieren zu können – Bspw. Netzanschlussprozess für Ladeinfrastruktur

Technik und Standards

Entwicklung der technische Fähigkeit sowie **standardisierte Schnittstellen** und Abläufe zur Steuerung von Ladevorgängen

Gesetzlicher Rahmen

Einhaltung der Melde- und Genehmigungspflicht sowie Ermöglichung von netzdienlichem Lademanagement als Standard (Weiterentwicklung §14a EnWG)

Zusammenarbeit

Einbindung aller Akteure, frühzeitige Abstimmung zur künftigen Netzentwicklung (Planung von Ladeparks, Mobilitätskonzepte, Genehmigungen etc.)

Unser Ziel: Verteilnetzbetreiber sind Möglichmacher der Verkehrswende!